27 april 2024: Bron: National Institutes of Health (NIH)  (met dank aan Eddy die me op deze studie wees) 

Onderzoekers van het National Institutes of Health (NIH)  hebben een diagnosetest (PERCEPTIONontwikkelt met hulp van AI = Kunstmatige Inteligentie   en met gebruik van gegevens van individuele cellen in tumoren (single-cell RNA-sequencing-gegevens) die nauwkeurig kan voorspellen of specifieke kankermedicijnen of combinaties van kankermedicjnen  bij kankerpatiënten effectief zullen zijn of dat de kankerpatiënt resistent voor die behandeling zal zijn.

Onderzoekers van het National Cancer Institute (NCI), onderdeel van NIH, publiceerden hun werk op 18 april 2024 in Nature Cancer en suggereren dat dergelijke single-cell RNA-sequencing-gegevens op een dag zouden kunnen worden gebruikt om artsen te helpen kankerpatiënten nauwkeuriger te matchen. met medicijnen die effectief zullen zijn tegen hun kanker. De onderzoekers onderzochten tot nu toe 44 door de Food and Drug Administration goedgekeurde kankermedicijnen of combinaties daarvan.

(PERCEPTION staat voor PERsonalised single-Cell Expression-based Planning for treatments In ONcology).

In de nieuwe studie onderzochten de onderzoekers of ze een machine learning-techniek, transfer learning genaamd, konden gebruiken om een AI = Kunstmatige Inteligentie -model te trainen om medicijnreacties te voorspellen met behulp van algemeen beschikbare bulk-RNA-sequencing-gegevens, maar dat model vervolgens te verfijnen met behulp van single-cell RNA-sequencing-gegevens.

De AI-modellen voorspelden nauwkeurig hoe individuele cellen zouden reageren op zowel afzonderlijke medicijnen als combinaties van medicijnen.
Vervolgens testten de onderzoekers hun aanpak op gepubliceerde gegevens van 41 patiënten met multiple myeloma - botkanker die werden behandeld met een combinatie van vier geneesmiddelen.
Ook werd de diagnosetest gebruikt bij 33 patiënten met borstkanker die werden behandeld met een combinatie van twee geneesmiddelen.
Bovendien voorspelde het AI = Kunstmatige Inteligentie -model met succes de ontwikkeling van resistentie in gepubliceerde gegevens van 24 patiënten die werden behandeld met gerichte behandelingen voor niet-kleincellige longkanker.

Wat heel opmerkelijk was dat de onderzoekers ontdekten dat als slechts één kloon resistent was tegen een bepaald medicijn, de patiënt niet op dat medicijn zou reageren, zelfs als alle andere klonen wel reageerden.



De huidige benaderingen voor het matchen van patiënten met medicijnen zijn gebaseerd op bulksequencing van tumor-DNA en RNA, waarbij een gemiddelde wordt genomen van alle cellen in een tumormonster. Tumoren bevatten echter meer dan één type cel en kunnen in feite veel verschillende soorten subpopulaties van cellen hebben. Individuele cellen in deze subpopulaties staan bekend als klonen. Onderzoekers denken dat deze subpopulaties van cellen anders kunnen reageren op specifieke medicijnen, wat zou kunnen verklaren waarom sommige patiënten niet reageren op bepaalde medicijnen of er resistentie tegen ontwikkelen.
In tegenstelling tot bulksequencing biedt een nieuwere technologie, bekend als single-cell RNA-sequencing, gegevens met een veel hogere resolutie, tot op het niveau van één cel.

Het gebruik van deze aanpak voor het identificeren en targeten van individuele klonen kan leiden tot duurzamere medicijnreacties. Genexpressiegegevens van één cel zijn echter veel duurder om te genereren dan bulkgenexpressiegegevens en zijn nog niet algemeen beschikbaar in klinische omgevingen.

De onderzoekers waarschuwden dat de nauwkeurigheid van deze techniek zal verbeteren als single-cell RNA-sequencing-gegevens op grotere schaal beschikbaar komen. In de tussentijd hebben de onderzoekers een onderzoekswebsite en een gids ontwikkeld voor het gebruik van het AI-model, genaamd PERCEPTION = PERsonalised single-Cell Expression-based Planning for treatments In ONcology), met nieuwe datasets.

Het summiere abstract zoals gepubliceerd in Nature. Voor het volledige studierapport moet betaald worden.

  • Analysis
  • Published: 

PERCEPTION predicts patient response and resistance to treatment using single-cell transcriptomics of their tumors

Abstract

Tailoring optimal treatment for individual cancer patients remains a significant challenge. To address this issue, we developed PERCEPTION (PERsonalized Single-Cell Expression-Based Planning for Treatments In ONcology), a precision oncology computational pipeline. Our approach uses publicly available matched bulk and single-cell (sc) expression profiles from large-scale cell-line drug screens. These profiles help build treatment response models based on patients’ sc-tumor transcriptomics. PERCEPTION demonstrates success in predicting responses to targeted therapies in cultured and patient-tumor-derived primary cells, as well as in two clinical trials for multiple myeloma and breast cancer. It also captures the resistance development in patients with lung cancer treated with tyrosine kinase inhibitors. PERCEPTION outperforms published state-of-the-art sc-based and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible at https://github.com/ruppinlab/PERCEPTION. Our work, showcasing patient stratification using sc-expression profiles of their tumors, will encourage the adoption of sc-omics profiling in clinical settings, enhancing precision oncology tools based on sc-omics.

Similar content being viewed by others

Data availability

The entire collection of the processed datasets used in this manuscript, including preclinical models of cancer cell lines and PDCs, can be accessed in the Zenodo repository (https://zenodo.org/record/7860559)58. We collected the bulk-expression and drug response profiles generated in cancer cell lines curated from the DepMap portal (https://depmap.org/portal/download) (version 20Q1). The sc-expression of 205 cancer cell lines was generated in a previous study34 and was downloaded from https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-line-heterogeneity#study-download. The sc-expression profiles of patients with multiple myeloma were downloaded from the original study (their supplementary Table 2; https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-021-01232-w/MediaObjects/41591_2021_1232_MOESM3_ESM.xlsx); data from patients with breast cancer were downloaded from GEO (GSE158724) and data from patients with NSCLC were provided by the original study authors41.

Code availability

The scripts to replicate each step of results and plots can be accessed in a GitHub repository (https://github.com/ruppinlab/SCPO_submission). We used open-source R versions 4.0 through 4.2 to generate the figures. Wherever required, commercially available Adobe Illustrator was used to create the figure grids.

References

  1. Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  2. Huang, K., Xiao, C., Glass, L. M. & Critchlow, C. M. Machine learning applications for therapeutic tasks with genomics data. Patterns 2, 100328 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  3. Bhinder, B., Gilvary, C., Madhukar, N. S. & Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 11, 900–915 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  4. Singla, N. & Singla, S. Harnessing big data with machine learning in precision oncology. Kidney Cancer J. 18, 83–84 (2020).

    PubMed PubMed Central Google Scholar 

  5. Senft, D., Leiserson, M. D. M., Ruppin, E. & Ronai, Z. Precision oncology: the road ahead. Trends Mol. Med. 23, 874–898 (2017).

    Article PubMed PubMed Central Google Scholar 

  6. Tsimberidou, A. M., Fountzilas, E., Bleris, L. & Kurzrock, R. Transcriptomics and solid tumors: the next frontier in precision cancer medicine. Semin. Cancer Biol. 84, 50–59 (2022).

    Article CAS PubMed Google Scholar 

  7. Siravegna, G., Marsoni, S., Siena, S. & Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017).

    Article CAS PubMed Google Scholar 

  8. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article CAS PubMed Google Scholar 

  9. Sawabata, N. Circulating tumor cells: from the laboratory to the cancer clinic. Cancers 12, 3065 (2020).

    Article PubMed PubMed Central Google Scholar 

  10. Beaubier, N. et al. Integrated genomic profiling expands clinical options for patients with cancer. Nat. Biotechnol. 37, 1351–1360 (2019).

    Article CAS PubMed Google Scholar 

  11. Hayashi, A. et al. A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  12. Rodon, J. et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial. Nat. Med. 25, 751–758 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  13. Tanioka, M. et al. Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer. Clin. Cancer Res. 24, 5292–5304 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  14. Vaske, O. M. et al. Comparative tumor RNA sequencing analysis for difficult-to-treat pediatric and young adult patients with cancer. JAMA Netw. Open 2, e1913968 (2019).

    Article PubMed PubMed Central Google Scholar 

  15. Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).

    Article CAS PubMed Google Scholar 

  16. Lee, J. S. et al. Synthetic lethality-mediated precision oncology via the tumor transcriptome. Cell 184, 2487–2502 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  17. Dinstag, G. et al. Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome. Med 4, 15–30.e8 (2023).

  18. Castro, L. N. G., Tirosh, I. & Suvà, M. L. Decoding cancer biology one cell at a time. Cancer Discov. 11, 960–970 (2021).

    Article CAS PubMed Central Google Scholar 

  19. Wensink, G. E. et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. npj Precis. Oncol. 5, 30 (2021).

    Article PubMed PubMed Central Google Scholar 

  20. Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26 (2020).

    Article CAS PubMed Google Scholar 

  21. de Witte, C. J. et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter-and intrapatient drug responses. Cell Rep. 31, 107762 (2020).

    Article PubMed Google Scholar 

  22. Shalek, A. K. & Benson, M. Single-cell analyses to tailor treatments. Sci. Transl. Med. 9, eaan4730 (2017).

    Article PubMed PubMed Central Google Scholar 

  23. Adam, G. et al. Machine learning approaches to drug response prediction: challenges and recent progress. npj Precis. Oncol. 4, 19 (2020).

    Article PubMed PubMed Central Google Scholar 

  24. Zhu, S. et al. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 8, 53763–53779 (2017).

    Article PubMed PubMed Central Google Scholar 

  25. Kim, K. T. et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 17, 80 (2016).

    Article PubMed PubMed Central Google Scholar 

  26. Suphavilai, C. et al. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome Med. 13, 189 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  27. Fustero-Torre, C. et al. Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data. Genome Med. 13, 187 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  28. Ianevski, A. et al. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci. Adv. 7, eab4038 (2021).

    Article Google Scholar 

  29. Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  30. Ledergor, G. et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 24, 1867–1876 (2018).

    Article CAS PubMed Google Scholar 

  31. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  32. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  33. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  34. Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  35. Plana, D., Palmer, A. C. & Sorger, P. K. Independent drug action in combination therapy: implications for precision oncology. Cancer Discov. 12, 606–624 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  36. Yang, W. et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res. 41, D955–D961 (2012).

    Article PubMed PubMed Central Google Scholar 

  37. Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).

    Article CAS PubMed PubMed Central Google Scholar 

  38. Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  39. Nair, N. U. et al. A landscape of response to drug combinations in non-small-cell lung cancer. Nat. Commun. 14, 3830 (2023).

    Article CAS PubMed PubMed Central Google Scholar 

  40. Griffiths, J. I. et al. Serial single-cell genomics reveals convergent subclonal evolution of resistance as patients with early-stage breast cancer progress on endocrine plus CDK4/6 therapy. Nat. Cancer 2, 658–671 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  41. Maynard, A. et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 182, 1232–1251 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  42. Noronha, A. et al. AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer. Cancer Discov. 12, 2666–2683 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  43. Pluchino, K. M., Hall, M. D., Goldsborough, A. S., Callaghan, R. & Gottesman, M. M. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist. Updat. 15, 98–105 (2012).

    Article CAS PubMed PubMed Central Google Scholar 

  44. Bartholomeusz, C. et al. Gemcitabine overcomes erlotinib resistance in EGFR-overexpressing cancer cells through downregulation of Akt. J. Cancer 2, 435–442 (2011).

  45. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article CAS PubMed Google Scholar 

  46. Shin, S., Park, C. M., Kwon, H. & Lee, K.-H. Erlotinib plus gemcitabine versus gemcitabine for pancreatic cancer: real-world analysis of Korean national database. BMC Cancer 16, 443 (2016).

    Article PubMed PubMed Central Google Scholar 

  47. Luo, J. et al. Erlotinib and trametinib in patients with EGFR-mutant lung adenocarcinoma and acquired resistance to a prior tyrosine kinase inhibitor. JCO Precis. Oncol. 5, 55–64 (2021).

    Article Google Scholar 

  48. Mariotto, A. B. et al. Projections of the cost of cancer care in the United States: 2010–2020. J. Natl. Cancer Inst. 103, 117–128 (2011).

    Article PubMed PubMed Central Google Scholar 

  49. Svensson, V. Droplet scRNA-seq is not zero-inflated. Nat. Biotech. 38, 147–150 (2020).

    Article CAS Google Scholar 

  50. Cao, Y., Kitanovski, S., Küppers, R. & Hoffmann, D. UMI or not UMI, that is the question for scRNA-seq zero-inflation. Nat. Biotechnol. 39, 158–159 (2021).

    Article CAS PubMed Google Scholar 

  51. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Soft. 33, 1–22 (2010).

    Article Google Scholar 

  52. Ling, A. & Huang, R. S. Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action. Nat. Commun. 11, 5848 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  53. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  54. Stergiopoulos, S., Getz, K. A. & Blazynski, C. Evaluating the completeness of ClinicalTrials.gov. Ther. Innov. Regul. Sci. 53, 307–317 (2019).

    Article PubMed Google Scholar 

  55. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article CAS PubMed Google Scholar 

  56. Song, Q. et al. Dissecting intratumoral myeloid cell plasticity by single cell RNA‐seq. Cancer Med. 8, 3072–3085 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  57. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  58. Sinha, S. Predicting patient treatment response and resistance via single-cell transcriptomics of their tumors (0.1) [Data set]. Zenodo https://doi.org/10.5281/zenodo.7860559 (2022).

Download references

Acknowledgements

This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), NIH grants R01CA231300 (T.G.B.), R01CA204302 (T.G.B.), R01CA211052 (T.G.B.), R01CA169338 (T.G.B.) and U54CA224081 (T.G.B.). This work used the computational resources of the NIH High-Performance Computing Biowulf cluster (http://hpc.nih.gov). We acknowledge and thank the NCI for providing financial and infrastructural support. Thanks to K. Wang, S. Rajagopal and Z. Ronai for their valuable feedback and discussion. Special thanks to J. I. Griffiths and A. H. Bild for clarifying the patient response data in reference 40 and for their helpful feedback.

Author information

Authors and Affiliations

Contributions

S.S., R.V., A.A.S. and E.R. conceived the framework of the analysis. E.R. and A.A.S. mentored and guided the study. S.S. and R.V. led the analysis of the development of the models and most of the testing. A.A.S., A.V.K., R.V. and S.S. performed the analysis related to clinical trials curation and data analysis. A.A.S., S.M., S.R.D, N.U.N, M.G.J. and N.Y worked on the revisions for model validation and further testing and development of the software. W.W., D.L.K, C.M.B. and T.G.B. provided the lung cancer data and aided in its analysis. O.V.S., I.G., K.D.A., C.M.B. and C.J.T. contributed to finding relevant dosages to translate in vitro to in vivo results. S.S., R.V., A.A.S., E.R., P.J., C.H.B. and T.G.B. wrote the initial draft of the manuscript; S.S., S.M., A.A.S. and E.R. carried out the revisions.

Corresponding authors

Correspondence to Sanju Sinha or Eytan Ruppin.

Ethics declarations

Competing interests

S.S., R.V., A.A.S. and E.R. are inventors on a provisional patent application covering the methods in PERCEPTION. E.R. is a co-founder of Medaware, Metabomed and Pangea Biomed (divested from the latter). E.R. serves as a non-paid scientific consultant to Pangea Biomed, a company developing a precision oncology SL-based multi-omics approach, with emphasis on bulk tumor transcriptomics. T.G.B. is an advisor to Array/Pfizer, Revolution Medicines, Springworks, Jazz Pharmaceuticals, Relay Therapeutics, Rain Therapeutics and Engine Biosciences, and receives research funding from Novartis, Strategia, Kinnate and Revolution Medicines. The work in the laboratory of C.H.B. was funded in part by Amgen and Novartis. The other authors declare no competing interests.


  





Plaats een reactie ...

Reageer op "Diagnosetest PERCEPTION via AI - Kunstmatige Intelligentie ontwikkeld en met hulp van single-cell RNA-sequencing voorspelt nauwkeurig of een specifiek medicijn van de kankerpatient zal aanslaan of resistent zal zijn."


Gerelateerde artikelen
 

Gerelateerde artikelen

6 nieuwe doorbraken in de >> 90 procent van mensen met >> Antibiotica binnen een maand >> Anti-PD medicijnen zoals nivolumab, >> Bacterien in uitzaaiingen >> Behandelen van kanker verschuift >> Biomarkers zoals PD-L1, CD163+ >> Bloedtest, uitgevoerd op in >> CHRISPR-CAS9 infuus blijkt >> De biologische processen waarom >>